Design Patterns for Data Modelling

1 Introduction

2. Concepts
One-to-Many Relationships

Many-to-Many Relationships
Rabbit's Ears
Inheritance
Reference Data
3 Data Warehouse
Design of an ERD
Design of a Data Warehouse
Reviewing the Design of a Data Warehouse
4. Applications
Customers and Demands
Units and Demands
Deliveries
Maintenance

1 Introduction

This document is a starting-point for discussion.
The Design Patters will be helpful for Quality Assurance of Data Models.
This applies particularly to Models produced by Third Parties.

2. Concepts

e One-to-Many Relationships

A Customer can place many Demands for Materiel.
This defines a One-to-Many Relationship.

A Data Modeller would say “For every Customer, there are many Demands”.
This is shown in a Data Model as follows :-



Design Patterns for Data Modelling

f Customers ]

PK Customer_ID
Cusztomer_Detailz

1

|

PK Demand_ID
FK Customer_ID

Demand_Detailz

e Many-to-Many Relationships

We can also say that a Demand can request many Products.

A Data Modeller would say “A Demand can request many Products, and each Product can be in many
Demands”.

This defines a Many-to-Many Relationship and is shown in a Data Model as follows :-

Many-to-Many Relationship cannot be implemented in Relational Databases.
Therefore we resolve this many-to-many into two one-to-many Relationships, which we show in
a Data Model as follows :-



Design Patterns for Data Modelling

( Demands w |( Products ‘]

PK Demand_ID PK Product_ID
FE Customer 1D Product_Details
Demand_Detailz

d o

Products_in_a_Demand

PF Demand_ID
PF Product_ID
CQuantity

Other_Detailz

When we look closely at this Data Model, we can see that the Primary Key is composed of the

Demand_ID and Product_ID fields.
This reflects the underlying logic, which states that every combination of Demand and Product is unique.

In the Database, this will define a new record.

When we see this situation in a Database, we can say that this reflects a many-to-many Relationship.
However, we can also show the same situation in a slightly different way, which reflects the standard
design approach of using a surrogate key as the Primary Key and showing the Demand and Product IDs

simply as Foreign Keys.

The beneifit of this approach is that it avoids the occurrence of too many Primary Keys if more dependent

Tables occur where they cascade downwards.
The benefit of the previous approach is that it avoids the possibility of ‘orphan’ records in the ‘Products in

a Demand’ table.
In other words, invalid records that have invalid Demand ID and/or Product ID values.

Demands Products

PK Product_ID
Product Details

PK Demand_ID
FK Customer_ID

Demand_Detailz

|
i i

FPm-ducts_in_a_Dem and_a Itematjve_desigr?

PK Product_in_Demand_ID
FK Demand_ID
FK Product 1D

Quantity

Other_Detailz




Design Patterns for Data Modelling

e Rabbit’s Ears

We start with the definition of a Unit, which at its simplest, looks like this :-
In this case, we use a meaningless ID which is simply a unique number.

PK Unit_ID
Unit_Details

Then we think about the fact that every Unit is part of a larger organisation.
In other words, every Unit rreports to a higher level within the overall organisation.

Fortunately, we can show this in a very simple and economical fashion by creating a relationship that
adds a parent ID to every Unit.
.This is accomplished by adding a relationship that joins the table to itself.

This is formally called a Reflexive relationship, and informally called ‘Rabbits Ear’s, and it looks like this :-

Units

|

|

PK Unit_ID |
- =

FK Parent_Unit_ID

Unit_Details

The Unit at the very top of organisation has no-one to report to, and a Unit at the lowest level does not
have any other Unit rreporting to it.

In other words, this relationship is Optional at the top and bottom levels.
We show this by the small letter ‘O’ at each end of the line which marks the relationship.

e Inheritance

Inheritance is a very simple and very powerful concept.
We can see examples of Inheritance in practice when we look around us every day.

For example, when we think about ‘Houses’, we implicitly include Bungalows and Ski Lodges, and
maybe even Apartments, Beach Huts and House Boats.

In a similar way, when we discuss Aircraft we might be talking Rotary and Fixed Wing Aircraft.

However, when we want to design or review a Data Model that includes Aircraft, then we need to analyse
how different kinds of Aircraft are shown in the design of the Data Model.



Design Patterns for Data Modelling

We use the concept of ‘Inheritance’ to achieve this.

Inheritance is exactly what it sounds like.

It means that at a high level, we identify the general name of the ‘Thing of Interest’ and the
characteristics that all of these Things share.

For example, an Aircraft will have a name for the type of Aircraft, such as Tornado and it will be of a
certain type, such as Fixed Wing or Rotary.

At the lower level of Fixed-Wing Aircraft, an Aircraft will have a minimum length for the runway that the
Aircraft needs in order to take off.

This situation is shown in the following diagram :-

Aircraft

PK Aircraft_ID

FK Aircraft_Type Code

FK Manufacturer Code
Ajrcraft_Mame
Ajrcraft_Description
Seating_Capacoty
Other_Details

[ Fixed_Wing_Aircraft | ( Rotary_Aircraft ]
PF Aircraft_ID {PF Aircraft_ID J
]

Minimum_Runway_Length Other_Rotary_Aircraft_Detai
Other_Fixed Wing_Detailz

e Reference Data

Reference Data is very important.

Wherever possible, it should conform to appropriate external standards, particularly national or
international standards.

For example, the International Standards Organization (1ISO’) publishes standards for Country
Code, Currency Codes, Languages Codes and so on.

For Materiel and Products, NATO has published the National Codification Bureau (NCB)
code. This is in use within the MOD and is administered from Kentigern House,

Glasgow.



Design Patterns for Data Modelling

This diagram shows two examples of Reference data that might apply to Aircraft.

f Ref_Aircraft_Type 1 .
PK Aircraft_Type_Code Aircraft
Aijrcraft_Type De=scription —'9"{: PK Aircraft_ID
eq Rotary or Fixed-Wing FK Aircraft_Type_ Code
* FE Manufacturer_Code
;" Aircraft_Mame
Ref_Manufacturers ] Ajrcraft_Description
PK Manufacturer_Code — —C""é Sedting_Capacoty
Manufacturer_Mame Other_Details
Other_Details " =
e
[ Fixed_Wing_Aircraft | (" Rotay Arcraft |
PF Aircraft_ID PF Aircraft_ID
Minimum_Runway_Length Other_Rotary_Aircraft_Details

Other_Fixed_Wing_Details

3 Data Warehouse

Design of an ERD
This Data Model is an Entity-Relationship-Diagram (‘ERD’) for Customers and Demands :-



Design Patterns for Data Modelling

f’ Ref_Product_Type

PK Customer ID PK Product Type C od.e.
Customer El_etﬂiks Product_Type Dezcription
- eq Aircraft Engine, Washer

-~ T

A A

L

f Customers

[ B

[ Demands ] | Products

PK Demand_ID PK Product_ID

Fi Customer_ID FK Product Type Code
Date_Demand_Made Product_Detailz
Date_Demand_Satis fied
Other_Detailz T

] ut]

er-ducts in_a_Demand

PF Demand_ID
PF Product_ID
Quantity

Other_Detailz

We could describe it in these terms :-
“Customers place Demands for Products of different Types.”

Design of a Data Warehouse

This Data Model shows the corresponding Data Warehouse for Customers and Demands :-



Design Patterns for Data Modelling

Ref_Calendar
PK Day_Date
Day_MNumber

( Customers ]—G— —| Data_Warehouse_Facts (Pm-ducts_in_a_[}emﬂnd]
PK Customer_ID PK Fact_ID PK Demand_ID
Customer_Details | FK Customer ID —=6— —5— |PK Product_ID
| FK Day Date Quantity
FE Demand 1D Other_Detailz

f_ Demands W
r: Demand_ID

L | FK Product_ID

FK Product Type Code
Date_Demand_Made - Cluantity

Date_Demand_Satisfied |_ “25‘ Other Details (— Ref_Product_Type -]
Other_Detailz Averages, Counts, Tn:ltai!ls-E __ g |PK Product_Type_Code

| Enguiriez and Reportz Product Type_Description
Pmducts 1 KPl=, Graphs, Trends eqg Aircraft Engine, Washer

PK Product _ID i Other Derived Figures )
Product_Detailz

The design of this Data Warehouse simply puts all data into a ‘big basket’

Reviewing the Design of a Data Warehouse

The design of any Data Warehouse will conform to this patter with Dimensions and Facts.
Dimensions correspond to Primary Keys in all the associated Tables (ie the Entities in the ERD) and the
Facts are the derived values that are available.

Therefore, reviewing the Design of a Data Warehouse involves looking for this Design Pattern.

With one exception, the Relationships are optional because the Enquiries need not involve any particular
Dimension.

The one exception to this rule is that the Relationship to the Calendar is mandatory because an Enquiry
will always include a Date.

Of course, an Enquiry might include all data since the first records, but the principle still applies.

The purpose of the Data Warehouse is to make it easy to retrieve data in any combination in
order to answer questions like this :-
e Which Customers ordered the most Products ?
e Which were the most popular Products in the first week of April ?
e What was the average time it took to respond to demands for Aircraft Engines ?
e How many Demands did we receive in May ?

4. Applications



Design Patterns for Data Modelling

e Customers and Demands

The design of the ERD in the Chapter on Data Warehouses shows a typical Customers and Orders
Data Model which represent a widespread kind of application.

e Units and Demands

Here is a slightly different Model showing Units instead of Customers and highlighting the power of
Rabbits Ears.

¢ 7
Units | [ Ref_Product_Type ' ] |

PK Unit_ID PK Product_Type_Code .

FK Parent_Unit_ID FK Parent_Product Type Code
Unit_Detailz Product_Type_Description

eq Adircraft Engine, Washer

' i
|
A A

-
Demands_ 1 |( Products
PK Demand_ID PK Product_ID
FE Unit_ID FE Product Type Code
Date_Demand_Made Product_Details
Date_Demand_Satizfied
Other_Detailz 4

i uil

(Products_in_a_[}aﬂand_w

PF Product_ID
PF Demand_ID
Quantity

Other_Detailz

e Deliveries

A Simple Design Pattern
This Data Model is a simple Design Pattern that covers the activities of delivering items
in a Demand to a designated address.
The process of reviewing a Data Model is to ask :-



Design Patterns for Data Modelling

“How do | describe the Business Rules behind this Model ?”
In this case, we could say :-

“A Customer can raise a Demand for Products to be delivered to a specified Address”.

Customers

P customer_id
customer_name
customer_phone
customer_email

date_became_customer| . -
other_customer_detailz

I
I
|
|
|
|

A

P .
Addresses
P address_id
line_1
line_2
- line_3
Customer_Addresses line_4
™ @l customer_id city
¥, address_id . postcode
@ date_from F county_area
(@ sddress type code country
date to other_address_details
L . . -

( Delivery_Routes

@ route_id
route_name
other_route_details

Products

Actual_Demands

@ product_id
product_name
product_price
product_description

@ actual_demand_id

customer_id

@
@ demand ststus cods
@

regular_demand_id

+
A

I
I
|
|

f__I

=k

elivery_Route_| ocations

route_id

other_details actual_demand_date
s o other_detailz
—— o —l_
I
iy iy
| Actua I_Demand_Pro-ductsW i Deliveries
actual_demand_id @ location_code
product_id @ sctus!_demand_id
quantity @ delivery _status code
delivery_date
other_delivery_detailz

-

e A Complex Design Pattern

eee

-

location_code

location_address id
location_name
other_location_details

AR



Design Patterns for Data Modelling

This shows a complex Pattern which adds Regular Demands.

(@ product_id @ regular_demand_id
proucs_name @ customsr_id
produci_price freguancy
procuct descrighion demand_dednits
ciher_detalis

4 g

'
(Reguiar_Demand_Products)
[§ recular_demand_id
il product_id
quantiy

@ actual_demand_id

e (@ cestomer_id

@ demand_stslus cods

@ regoler_demand i
achial_demand_dale
oiher_detais

o
i
[Mmal_ﬂemsnﬂ_ﬁrmm!ﬂ
G actusl demand_id
B product_jd

quantry

( Deliveries

@ Jocason_code
@ actusl_demand id
@ oelivery_status_ code

————————— Addresses
|r Customers Customer_fAddresses
@ addrezs_id
@ customer_id [l customer_id ne. 1
CUBIYET_ A | - @ addrese_id o .m::z
customer_phaneg ' 1y dote_from - bne 3
cusiomear_s=mail ﬂ address_fipe code ||-|9_.|.
Cale_became cuslomer date o Gﬂ;
othar_custemer_detail —_— N
=g
counly arsa
P?K country
other_addreas_dedaits
[ Regutar_pemanas | | Achml_Demands | [ Delwery_Routes

T

@ route_id
reuts_name

adher_roube_detailz

|
|
|
| I
| I
I I
Ay A
rDeIivergr_Rnule_Lucaﬁnrrsl
@ location_code
@ rowte_ig
@ focstian_sduress_id
lacation_nam=
other_lacation_details

defvery _date
atter_debvery_betais

e Maintenance

The scope of this Data Modelis the Maintenance of Assets by Third-Party Companies.
The Business Rules state :-

* An Asset can have a Maintenance Contract.

* An Asset consists of Asset Parts

* Faults occur with these Parts from time to time.

* Third Party Companies employ Maintenance Engineers to maintain these Assets.

* Engineers pay Visits which are recorded in a Fault Log.

* They correct the Faults and this is recorded in the Fault Log.



Design Patterns for Data Modelling

rummenﬂno&_wn&ers‘l
anIm_Pw_CmnpaIﬂeﬂ @ engineer_id
@ company_id - — — — — — — — —&= () company_d
@ company typs eodz . angineer_detais
COmpany_name Assets " —l—
company_address oy @ asset_id
ather_company, detale (Gh maintenance_contract_id |
I @ suoolier_comparny_id [’ Faull_Log I
agmet_make — -
ﬁ\ asaet model (1) :aunri_hT_s:ﬂr:_l;. |
. A eniry_datelime - -
[ Maintenance_Contracis ] assel_acquired_date fault_description | Engineer_Visits
@ maintenance_contract_id e :;B:‘:::::N‘dah ther_faul_detads | @ engineer_visit_id
@y maintensnce_contract_company._id - ) @ engineer_id
conlract_stari_date 1 -+ E{ @ Fuit_log_entry_id
contract_and_date @ raoit_status_code
other_contract_detais vizi_start_datetime
visit_end_dafketime
other_vist_details
[ parts |

@ part_id i

part_name E
chargeabls_yn

chargeable_smount Assel_Parls Part_Faults
other_pari_detais a<| [ asset_id nl @ part_fault_id I8
i pari_id P ssser i r_FEILILLﬂﬂ Parts

low| @ part_ic
faull_shar_name
fault_description

gther_faull_delsis
-

[ Foult_log_entry_id
B part_taul_id
(@ foult_statvs code

Barry Williams
Data Architect
Glue Ltd.



